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We present formulas for two-electron free-free exchange integrals and integrals with three Gaussians
and one plane-wave function that are required in calculations of electron scattering by polyatomic
molecules. The formulas of integrals with p- and d-type Gaussians were obtained by differentiation
of the fundamental integrals (sk′|sk) and (ss|sk) that contain s-type Gaussians only and that may be
evaluated by means of the Faddeeva function w. Explicit formulas are given for the two types of
integrals in the spd Gaussian basis.
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Evaluation of hybrid two-electron integrals is still a topical problem in calculations of
electron scattering by polyatomic molecules1, particularly in applications to molecular
systems which may be of chemical interest. Watson and McKoy2 derived formulas for
these integrals already a long time ago. For their method, which is based on a partial
wave expansion, McKoy and collaborators advocate1 the use of highly parallelized al-
gorithms. Apparently, the method is computationally very demanding for treatments of
polyatomic molecular targets, and therefore new ways of calculation of hybrid two-
electron integrals were looked for. Recently Kuang and Lin3 derived formulas for two-
electron integrals in a mixed Slater and plane-wave basis set but, in our opinion, in
applications to electron scattering by polyatomic molecules it is preferable to use Gaus-
sian basis sets. One of the authors examined4 therefore the use of the Rys numerical
quadrature5, developed for effective calculation of two-electron integrals in the Gaus-
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sian basis in the electronic structure theory6,7. In this paper we follow the suggestion by
Ostlund8 that hybrid integrals may be calculated as is usual in the electronic structure
theory for calculation of two-electron integrals over Gaussians9, except that complex
arguments must be used in incomplete gamma functions8,10. Watson and McKoy2 did
not consider this method profitable because the formulas for p-, d-, and higher Gaus-
sians, obtained by differentiation of the integral for s-type Gaussians, quickly become
complicated and error-prone. However, our test calculations show that the method may
be competitive to other methods for certain ranges of the argument of the incomplete
gamma function. We considered it therefore expedient to publish the formulas we have
derived for exchange free-free integrals and for integrals with three Gaussians and one
plane-wave function.

COMPUTATIONAL METHOD

A product of a Gaussian and a plane-wave function may be expressed as a product of
two Gaussians, multiplied by an preeponential factor

e−α(r − A)2 eik⋅r = eik⋅A e
− 

k2

2α e
− 

α
2

(r − A)2
 e

− 
α
2
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

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2

  . (1)

The exchange free-free integral

(gik′|gjk) ≡ ∫∫ e−ik′⋅r1 (x1 − Ax)mx
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and the integral with three Gaussians and one plane-wave function

(gigj|gkk) ≡ ∫∫ (x1 − Ax)mx
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and

(gigj|gkk) = eik⋅C e
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For exchange free-free integrals define the complex vectors

P = A − 
i

2αk ′  , (6)

Q = B + 
i

2βk (7)

and the constant

f = e−ik′⋅A e
− 

k′2

4α eik⋅B e
− 

k2

4β  . (8)

Then the fundamental integral for s-type Gaussians becomes10

(sk′|sk) = 
2

√π  afF0(z)  , (9)

where

a = 
π3

αβ√α + β   , (10)

and

z = 
αβ

α + β PQ
___

 2  . (11)

PQ is a distance between the points P and Q. For integrals with three Gaussians and
one plane-wave function we define

(5)
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Px = 
αAx + βBx

α + β  ,  Py = 
αAy + βBy

α + β  ,  Pz = 
αAz + βBz

α + β  , (12)

Q = C + 
i

2γk  , (13)

f = e
− 

αβ
α + β

AB
___

2

 e
− 

k2

4γ eik⋅C  , (14)

and the fundamental integral for s-type Gaussians becomes

(ss|sk) = 
2

√π afF0(z)  , (15)

where

a = 
π3

(α + β)γ√α + β + γ   , (16)

and

z = 
(α + β)γ
α + β + γ PQ

___
 2  . (17)

For both types of integrals we define a new variable

t = i√z  , (18)

which permits us to express the F0 function by means of the w function8,11, which is
also called the Faddeeva function, as

F0(z) = 
√π
2

 
i
t
 1 − w(t)et2

  . (19)

The Faddeeva function w may be calculated as recommended by Gautschi12, or more
conveniently by using the FORTRAN subroutine WFOZ (ref.13). Formulas for p-, d-,
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and higher Gaussians may be obtained by differentiation of the basic formulas (9) and
(15). For convenience we define the function

W0(t) = 
i
t
 1 − w(t)et2

  , (20)

where for the expression in the brackets we will use the notation

b(t) = 1 − w(t)et2  . (21)

For the derivatives of W0 it holds

dnW0(t)
dtn

 = − 
n
t
 
dn − 1W0(t)

dtn − 1  + 
i
t
 
dnb(t)

dtn
  , (22)

and by using the recursive expression11 for the derivatives of the w function
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dtn + 2  + 2t 
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dtn + 1  + 2(n + 1) d

nw(t)
dtn

 = 0 (23)

we have
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

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
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[(n − 1)/2]
(2t)n − 1 − 2i
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





 
db(t)

dt
  . (24)

The term in the brackets is equal to the expression for the Hermite polynomial Hn–1(t)
in which the factor for sign was dropped. For db(t)/dt it holds

db(t)
dt

 = − 
2i

√π
 et2  . (25)

For the derivatives of W0 with respect to the Cartesian coordinates of the points P and
Q on which the Gaussians are centered we have

∂W0

∂Pi
 = 

∂W0

∂t
 

∂t
∂Pi

  , (26)

1268 Carsky, Reschel:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



∂W0

∂Qi
 = − 

∂W0

∂Pi
  , (27)

∂2W0

∂Pi∂Pj
 = 

∂2W0

∂t2
 

∂t
∂Pi

 
∂t

∂Pj
 + 

∂W0

∂t
 

∂2t
∂Pi∂Pj

  , (28)

∂2W0

∂Pi∂Pj
 = 

∂2W0

∂Qi∂Qj
  , (29)

∂2W0

∂Pi∂Qj
 = − 

∂2W0

∂Pi∂Pj
  , (30)

∂3W0

∂Pi∂Pj∂Pk
 = 

∂3W0

∂t3
 

∂t
∂Pi

 
∂t

∂Pj
 

∂t
∂Pk

 + 
∂2W0

∂t2
 




∂2t
∂Pi∂Pj

 
∂t

∂Pk
 + 

∂2t
∂Pi∂Pk

 
∂t

∂Pj
 + 

∂2t
∂Pj∂Pk

 
∂t
∂Pi





+ 
∂W0

∂t
 

∂3t
∂Pi∂Pj∂Pk

  , (31)

∂4W0

∂Pi∂Pj∂Pk∂Pl
 = 

∂4W0

∂t4
 

∂t
∂Pi

 
∂t

∂Pj
 

∂t
∂Pk

 
∂t

∂Pl

+ 
∂3W0

∂t3
P6,ijkl 

∂2t
∂Pi∂Pj

 
∂t

∂Pk
 

∂t
∂Pl

 + 
∂2W0

∂t2
 



 P4,ijkl 

∂3t
∂Pi∂Pj∂Pk

 
∂t
∂Pl

 + P3,ijkl 
∂2t

∂Pi∂Pj
 

∂2t
∂Pk∂Pl

 




+ 
∂W0

∂t
 

∂4t
∂Pi∂Pj∂Pk∂Pl

  , (32)
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 = 
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∂Pk
 

∂t
∂Pl
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

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∂Pm
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∂2t
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∂2t
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


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


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∂t

∂Pm
 + P10,ijklm  

∂3t
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
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  , (33)

∂6W0

∂Pi∂Pj∂Pk∂Pl∂Pm∂Pn
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∂t
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∂t
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∂t

∂Pm
 

∂t
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+ 
∂4W0

∂t4
 



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∂3t
∂Pi∂Pj∂Pk

 
∂t

∂Pl
 

∂t
∂Pm

 
∂t

∂Pn
 + P45,ijklmn  

∂2t
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∂2t
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∂t
∂Pm
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∂Pn
 




+ 
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

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






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∂2t
∂Pi∂Pj

 
∂2t
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


 + 
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


 P6,ijklmn  

∂5t
∂Pi∂Pj∂Pk∂Pl∂Pm

 
∂t

∂Pn
 + P15,ijklmn  

∂4t
∂Pi∂Pj∂Pk∂Pl

 
∂2t

∂Pm∂Pn








+ P10,ijklmn  

∂3t
∂Pi∂Pj∂Pk

 
∂3t

∂Pl∂Pm∂Pn
 




+ 
∂W0

∂t
 

∂5t
∂Pi∂Pj∂Pk∂Pl∂Pm

  . (34)

The subscripts i, j, k, l mean x, y, z components of the position vectors P and Q, and
Pn,ij… means n permutations of i, j... As in the second derivatives, any single change of
Pi by Qi in the third and higher derivatives leads to the change of sign. Expressions for
the derivatives of t with respect to the Cartesian coordinates depend on the type of the
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integral. Therefore we present them separately for exchange free-free integrals and for
integrals with three Gaussians and one plane-wave function.

Special Expressions for Exchange Free-Free Integrals

∂t
∂Ai

 = i √αβ
α + β  

Pi − Qi

PQ
  , (35)

∂t
∂Bi

 = − 
∂t

∂Ai
(36)

The symbols A, B, α, β, P, and Q have the same meaning as in Eqs (2 ),(6), and (7). For
higher derivatives we have

∂2t
∂Ai∂Aj

 = −δij 
αβ

α + β 
1
t
 − 

∂t
∂Ai

 
∂t

∂Aj
 
1
t
  , (37)

∂2t
∂Ai∂Bj

 = − 
∂2t

∂Ai∂Aj
  , (38)

∂3t
∂Ai∂Aj∂Ak

 = − 
1
t
 



 

∂2t
∂Ai∂Aj

 
∂t

∂Ak
 + 

∂2t
∂Ai∂Ak

 
∂t

∂Aj
 + 

∂2t
∂Aj∂Ak

 
∂t

∂Ai
 



 , (39)

∂3t
∂Ai∂Aj∂Bk

 = − 
∂3t

∂Ai∂Aj∂Ak
  , (40)

∂4t
∂Ai∂Aj∂Ak∂Al

 = − 
1
t
 



 P4,ijkl 

∂3t
∂Ai∂Aj∂Ak

 
∂t

∂Al
 + P3,ijkl 

∂2t
∂Ai∂Aj

 
∂2t

∂Ak∂Al




  , (41)

∂4t
∂Ai∂Aj∂Ak∂Bl

 = − 
∂4t

∂Ai∂Aj∂Ak∂Al
  . (42)

P4 and P3 mean that the terms are sums of four and three permutations in indices i, j, k , l,
respectively. For convenience we define the following two vectors with the components
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ai = Pi − Ai  , (43)

bi = Qi − Bi  . (44)

Derivatives of the W0 function with respect to the coordinates Ai and Bj are obtained
readily from Eqs (25)–(33) by means of a substitution

∂n

∂Ai
n = 

∂n

∂Pi
n  , (45)

∂n

∂Bj
n = 

∂n

∂Qj
n  . (46)

Special Expressions for Integrals with Three Gaussians and One Plane-Wave
Function

∂t
∂Ai

 = i √(α + β)γ
α + β + γ  

α
α + β 

Pi − Qi

PQ
___   , (47)

∂t
∂Bj

 = i √(α + β)γ
α + β + γ  

β
α + β 

Pj − Qj

PQ
___   , (48)

∂t
∂Ck

 = − i √(α + β)γ
α + β + γ  

Pk − Qk

PQ
___   . (49)

The symbols A, B, C, α, β, γ, P, and Q have the same meaning as in Eqs (3), (12), and
(13). For the second derivatives we have

∂2t
∂Ai∂Aj

 = −δij 
α2γ

(α + β + γ)(α + β) 
1
t
 − 

∂t
∂Ai

 
∂t

∂Aj
 
1
t
  , (50)

∂2t
∂Ai∂Bj

 = −δij 
αβγ

(α + β + γ)(α + β) 
1
t
 − 

∂t
∂Ai

 
∂t

∂Bj
 
1
t
  , (51)
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∂2t
∂Ci∂Cj

 = −δij 
(α + β)γ

(α + β + γ) 
1
t
 − 

∂t
∂Ci

 
∂t

∂Cj
 
1
t
  , (52)

∂2t
∂Ai∂Cj

 = δij 
αγ

(α + β + γ) 
1
t
 − 

∂t
∂Ai

 
∂t

∂Cj
 
1
t
  . (53)

For higher derivatives the following general formulas hold

∂3t
∂Ri∂Sj∂Tk

 = − 
1
t
 



 

∂2t
∂Ri∂Sj

 
∂t

∂Tk
 + 

∂2t
∂Ri∂Tk

 
∂t
∂Sj

 + 
∂2t

∂Sj∂Tk
 

∂t
∂Ri

 



  , (54)

∂4t
∂Ri∂Sj∂Tk∂Ul

 = − 
1
t
 



 P4,RiSjTkUl

 
∂3t

∂Ri∂Sj∂Tk
 

∂t
∂Ul

 + P3,RiSjTkUl
 

∂2t
∂Ri∂Sj

 
∂2t

∂Tk∂Ul 



  , (55)

∂5t
∂Ri∂Sj∂Tk∂Ul∂Vm

 = − 
1
t
 



 P5,RiSjTkUlVm

  
∂4t

∂Ri∂Sj∂Tk∂Ul
 

∂t
∂Vm

 







+ P10,RiSjTkUlVm

  
∂3t

∂Ri∂Sj∂Tk
 

∂2t
∂Ul∂Vm

 



  , (56)

∂6t
∂Ri∂Sj∂Tk∂Ul∂Vm∂Wn

 = − 
1
t
 



 P6,RiSjTkUlVmWn

 
∂5t

∂Ri∂Sj∂Tk∂Ul∂Vm
 

∂t
∂Wn








+ P15,RiSjTkUlVmWn

 
∂4t

∂Ri∂Sj∂Tk∂Ul
 

∂2t
∂Vm∂Wn

 + P10,RiSjTkUlVmWn
 

∂3t
∂Ri∂Sj∂Tk

 
∂3t

∂Ul∂Vm∂Wn 



  . (57)

Here R, S, T, U, V, W may represent any of the centers A, B, C, and Pn means that the
respective term is a sum of n permutations in indices Ri, Sj, Tk, Ul, Vm, Wn. For conveni-
ence we define the following three vectors with the components

ai = Pi − Ai  , (58)

bi = Pi − Bi  , (59)

ci = Qi − Ci  . (60)
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Derivatives of the W0 function with respect to the coordinates Ai , Bj , and Ck, may be
obtained from Eqs (25)–(33) by means of the following substitution

∂n

∂Ai
n = 





α
α + β





n

 
∂n

∂Pi
n  , (61)

∂n

∂Bj
n = 





β
α + β





n

 
∂n

∂Pj
n  , (62)

∂n

∂Ck
n = 

∂n

∂Qk
n  . (63)

FORMULAS FOR INTEGRALS IN THE spd GAUSSIAN BASIS

Exchange Free-Free Integrals

In the following equations (64)–(69) a is defined by Eq. (10), f by Eq. (8), and the
vector components ai and bi by Eqs (43) and (44). By s, p, d we mean unnormalized s-,
p-, and d-type Cartesian Gaussians, with exponents α (at center A) and β (at center B)

(sk′|sk) = afW0  , (64)

(pik′|sk) = af 



 aiW0 + 

1
2α 

∂W0

∂Ai
 



  , (65)

(pik′|pjk) = af 



 aibjW0 + 

bj

2α 
∂W0

∂Ai
 + 

ai

2β 
∂W0

∂Bj
 + 

1
4αβ 

∂2W0

∂Ai∂Bj




  , (66)

(dijk′|sk) = af 



 (aiaj + δij 

1
2α)W0 + 

aj

2α 
∂W0

∂Ai
 + 

ai

2α 
∂W0

∂Aj
 + 

1
4α2 

∂2W0

∂Ai∂Aj
 



  , (67)

(dijk′|pkk) = af 



 (aiajbk + δij 

1
2αbk)W0 + 

aiaj

2β  
∂W0

∂Bk
 + 

aibk

2α  
∂W0

∂Aj
 + 

ajbk

2α  
∂W0

∂Ai
 + δij 

1
4αβ 

∂W0

∂Bk
  







+ ai 

1
4αβ 

∂2W0

∂Aj∂Bk
 + aj 

1
4αβ 

∂2W0

∂Ai∂Bk
 + bk 

1
4α2 

∂2W0

∂Ai∂Aj
 + 

1
8α2β

 
∂3W0

∂Ai∂Aj∂Bk
 



  , (68)
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(dijk′|dklk) = af 



 (aiajbkbl + δij 

1
2αbkbl + δkl 

1
2βaiaj + δijδkl 

1
4αβ)W0 





+ 
1
2β 




 aiajbk + δij 

1
2αbk 




 
∂W0

∂Bl
 + 

1
2β 




 aiajbl + δij 

1
2αbl 




 
∂W0

∂Bk

+ 
1

2α 



 aibkbl + δkl 

1
2βai 




 
∂W0

∂Aj
 + 

1
2α 




 ajbkbl + δkl 

1
2βaj 




 
∂W0

∂Ai

+ aiaj 
1

4β2 
∂2W0

∂Bk∂Bl
 + 

1
4αβ 




 aibk 

∂2W0

∂Aj∂Bl
 + aibl 

∂2W0

∂Aj∂Bk
 + ajbk 

∂2W0

∂Ai∂Bl
 + ajbl 

∂2W0

∂Ai∂Bk





+ bkbl 
1

4α2 
∂2W0

∂Ai∂Aj
 + 

1
8αβ2 




 δij 

∂2W0

∂Bk∂Bl
 + ai 

∂3W0

∂Aj∂Bk∂Bl
 + aj 

∂3W0

∂Ai∂Bk∂Bl
 







+ 

1
8α2β

 



 δkl 

∂2W0

∂Ai∂Aj
 + bk 

∂3W0

∂Ai∂Aj∂Bl
 + bl 

∂3W0

∂Ai∂Aj∂Bk
 



 + 

1
16α2β2 

∂4W0

∂Ai∂Aj∂Bk∂Bl
 



  . (69)

Integrals with Three Gaussians and One Plane-Wave Function

In the following equations (70)–(102) a is defined by Eq. (16), f by Eq. (14), and the
vector components ai, bi, ci, Pi, and Qi by Eqs (58)–(60) and (12)–(13). By s, p, d we
mean unnormalized s-, p-, and d-type Cartesian Gaussians, with exponents α (at center A),
β (at center B) and γ (at center C)

(ss|sk) = afW0  , (70)

(pis|sk) = af 



 aiW0 + 

1
2(α + β) 

∂W0

∂Pi
 



  , (71)

(pipj|sk) = af  D0
11W0 + D1

11 + D2
11   , (72)
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D0
11 = 




 aibj + δij 

1
2(α + β)




  , (73)

D1
11 = 

1
2(α + β) 




 bj 

∂W0

∂Pi
 + ai 

∂W0

∂Pj
 



  , (74)

D2
11 = 

1
4(α + β)2 

∂2W0

∂Pi∂Pj
  , (75)

(dijs|sk) = af  D0
20W0 + D1

20 + D2
20   , (76)

D0
20 = 




 aiaj + δij 

1
2(α + β) 




  , (77)

D1
20 = 

1
2(α + β) 




 aj 

∂W0

∂Pi
 + ai 

∂W0

∂Pj
 



  , (78)

D2
20 = 

1
4(α + β)2 

∂2W0

∂Pi∂Pj
  , (79)

(dijpk|sk) = af  D0
21W0 + D1

21 + D2
21 + D3

21   , (80)

D0
21 = 




 aiajbk + 

1
2(α + β) 

δijbk + δikaj + δjkai
 



  , (81)

D1
21 = 

1
2(α + β) 




 aiaj 

∂W0

∂Pk
 + aibk 

∂W0

∂Pj
 + ajbk 

∂W0

∂Pi
 




+ 
1

4(α + β)2 



 δij 

∂W0

∂Pk
 + δik 

∂W0

∂Pj
 + δjk 

∂W0

∂Pi
 



  , (82)

D2
21 = 

1
4(α + β)2 




 ai 

∂2W0

∂Pj∂Pk
 + aj 

∂2W0

∂Pi∂Pk
 + bk 

∂2W0

∂Pi∂Pj
 



  , (83)
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D3
21 = 

1
8(α + β)3 

∂3W0

∂Pi∂Pj∂Pk
  , (84)

(dijdkl|sk) = af  D0
22W0 + D1

22 + D2
22 + D3

22 + D4
22   , (85)

D0
22 = 




 aiajbkbl + 

1
2(α + β) (δijbkbl + δikajbl + δilajbk + δjkaibl + δjlaibk + δklaiaj )








+ 

1
4(α + β)2 (δijδkl + δikδjl + δjkδil)




  , (86)

D1
22 = 

1
2(α + β) 




 aiajbk 

∂W0

∂Pl
 + aiajbl 

∂W0

∂Pk
 + aibkbl 

∂W0

∂Pj
 + ajbkbl 

∂W0

∂Pi
 




+ 
1

4(α + β)2 



 aiP3,jklδjk 

∂W0

∂Pl
 + ajP3,iklδik 

∂W0

∂Pl
 + bkP3,ijl  δij 

∂W0

∂Pl
 + blP3,ijk δij 

∂W0

∂Pk




  , (87)

D2
22 = 

1
4(α + β)2 




 aiaj 

∂2W0

∂Pk∂Pl
 + aibk 

∂2W0

∂Pj∂Pl
 + aibl 

∂2W0

∂Pj∂Pk
 







+ ajbk 

∂2W0

∂Pi∂Pl
 + ajbl 

∂2W0

∂Pi∂Pk
 + bkbl 

∂2W0

∂Pi∂Pj
 



 + 

1
8(α + β)3 P6,ijklδij 

∂2W0

∂Pk∂Pl
  , (88)

D3
22 = 

1
8(α + β)3 




 ai 

∂3W0

∂Pj∂Pk∂Pl
 + aj 

∂3W0

∂Pi∂Pk∂Pl
 + bk 

∂3W0

∂Pi∂Pj∂Pl
 + bl 

∂3W0

∂Pi∂Pj∂Pk
 



  , (89)

D4
22 = 

1
16(α + β)4 

∂4W0

∂Pi∂Pj∂Pk∂Pl
  , (90)

P3 in Eq. (87) and P6 in Eq. (88) mean three permutations in indices i, j, k and six
permutations in indices i, j, k, l.

(ss|pik) = af 



 ciW0 + 

1
2γ 

∂W0

∂Qi
 



  , (91)
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(pis|pjk) = af 



 aicjW0 + ai 

1
2γ 

∂W0

∂Qj
 + cj 

1
2(α + β) 

∂W0

∂Pi
 + 

1
4(α + β)γ 

∂2W0

∂Pi∂Qj
 



  , (92)

(pipj|pkk) = af 



 ck(D0

11W0 + D1
11 + D2

11) + 
1
2γ D0

11 
∂W0

∂Qk
 







+ 

1
4(α + β)γ 




 ai 

∂2W0

∂Pj∂Qk
 + bj 

∂2W0

∂Pi∂Qk
 



 + 

1
8(α + β)2 

∂3W0

∂Pi∂Pj∂Qk
 



  , (93)

(dijs|pkk) = af 



 ck(D0

20W0 + D1
20 + D2

20) + 
1
2γD0

20 
∂W0

∂Qk








+ 

1
4(α + β)γ 




 ai 

∂2W0

∂Pj∂Qk
 + aj 

∂2W0

∂Pi∂Qk
 



 + 

1
8(α + β)2γ

 
∂3W0

∂Pi∂Pj∂Qk
 



  , (94)

(dijpk|plk) = af 



 cl(D0

21W0 + D1
21 + D2

21 + D3
21) + 

1
2γ D0

21 
∂W0

∂Ql





+ 
1

4(α + β)γ 



 aiaj 

∂2W0

∂Pk∂Ql
 + aibk 

∂2W0

∂Pj∂Ql
 + ajbk 

∂2W0

∂Pi∂Ql
 



 + 

1
8(α + β)2γ

 P3,ijkδij 
∂2W0

∂Pk∂Ql

+ 
1

8(α + β)2γ
 



 ai 

∂3W0

∂Pj∂Pk∂Ql
 + aj 

∂3W0

∂Pi∂Pk∂Ql
 + bk 

∂3W0

∂Pi∂Pj∂Ql
 







+ 

1
16(α + β)3γ

 
∂4W0

∂Pi∂Pj∂Pk∂Ql
 



  , (95)

(dijdkl|pmk) = af 



 cm(D0

22W0 + D1
22 + D2

22 + D3
22 + D4

22) + 
1
2γ D0

22 
∂W0

∂Qm





+ 
1

4(α + β)γ 



 aiajbk 

∂2W0

∂Pl∂Qm
 + aiajbl 

∂2W0

∂Pk∂Qm
 + aibkbl 

∂2W0

∂Pj∂Qm
 + ajbkbl 

∂2W0

∂Pi∂Qm
 



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+ 
1

8(α + β)2γ
 



aiP3,jklδjk 

∂2W0

∂Pl∂Qm
 + ajP3,iklδik 

∂2W0

∂Pl∂Qm
 + bkP3,ijl  δij 

∂2W0

∂Pl∂Qm
 + blP3,ijkδij 

∂2W0

∂Pk∂Qm
 




+ 
1

8(α + β)2γ
 



 aiaj 

∂3W0

∂Pk∂Pl∂Qm
 + aibk 

∂3W0

∂Pj∂Pl∂Qm
 + aibl 

∂3W0

∂Pj∂Pk∂Qm








+ ajbk 

∂3W0

∂Pi∂Pl∂Qm
 + ajbl 

∂3W0

∂Pi∂Pk∂Qm
 + bkbl 

∂3W0

∂Pi∂Pj∂Qm
 



 + 

1
16(α + β)3γ

 P6,ijklδij 
∂3W0

∂Pk∂Pl∂Qm

+ 
1

16(α + β)3γ
 



ai 

∂4W0

∂Pj∂Pk∂Pl∂Qm
 + aj 

∂4W0

∂Pi∂Pk∂Pl∂Qm
 + bk 

∂4W0

∂Pi∂Pj∂Pl∂Qm
 + bl 

∂4W0

∂Pi∂Pj∂Pk∂Qm
 







+ 

1
32(α + β)4γ

 
∂5W0

∂Pi∂Pj∂Pk∂Pl∂Qm
 



  , (96)

(ss|dijk) = af 







 cicj + δij 

1
2γ




 W0 + 

1
2γ 




 ci 

∂W0

∂Qj
 + cj 

∂W0

∂Qi
 



 + 

1
4γ2 

∂2W0

∂Qi∂Qj
 



  , (97)

(pis|djkk) = af 







 cjck + δjk 

1
2γ




 



 aiW0 + 

1
2(α + β) 

∂W0

∂Pi
 



 + ai 

1
2γ 




 cj 

∂W0

∂Qk
 + ck 

∂W0

∂Qj
 











+ 

1
4(α + β)γ 




 cj 

∂2W0

∂Pi∂Qk
 + ck 

∂2W0

∂Pi∂Qj
 



 + 

1
4γ2 ai 

∂2W0

∂Qj∂Qk
 + 

1
8(α + β)γ2 

∂3W0

∂Pi∂Qj∂Qk
 



  , (98)

(pipj|dklk) = af 






 ckcl + δkl

1
2γ 




 (D0

11W0 + D1
11 + D2

11)


+ 
1
2γD0

11 



 ck 

∂W0

∂Ql
 + cl 

∂W0

∂Qk
 + 

1
2γ 

∂2W0

∂Qk∂Ql
 




+ 
1

4(α + β)γ ai 



 ck 

∂2W0

∂Pj∂Ql
 + cl 

∂2W0

∂Pj∂Qk
 



 + 

1
4(α + β)γ bj 




 ck 

∂2W0

∂Pi∂Ql
 + cl 

∂2W0

∂Pi∂Qk
 



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+ 
1

8(α + β)2γ
 



 ck 

∂3W0

∂Pi∂Pj∂Ql
 + cl 

∂3W0

∂Pi∂Pj∂Qk
 



 + 

1
8(α + β)γ2 




 ai 

∂3W0

∂Pj∂Qk∂Ql
 + bj 

∂3W0

∂Pi∂Qk∂Ql
 







+ 

1
16(α + β)2γ2 

∂4W0

∂Pi∂Pj∂Qk∂Ql
 



  , (99)

(dijs|dklk) = af 






 ckcl + δkl

1
2γ 




 (D0

20W0 + D1
20 + D2

20)


+ 
1
2γD0

20 



 ck 

∂W0

∂Ql
 + cl 

∂W0

∂Qk
 + 

1
2γ 

∂2W0

∂Qk∂Ql
 




+ 
1

4(α + β)γ ai 



 ck 

∂2W0

∂Pj∂Ql
 + cl 

∂2W0

∂Pj∂Qk
 



 + 

1
4(α + β)γ aj 




 ck 

∂2W0

∂Pi∂Ql
 + cl 

∂2W0

∂Pi∂Qk
 




+ 
1

8(α + β)2γ
 



 ck 

∂3W0

∂Pi∂Pj∂Ql
 + cl 

∂3W0

∂Pi∂Pj∂Qk
 



 + 

1
8(α + β)γ2 




 ai 

∂3W0

∂Pj∂Qk∂Ql
 + aj 

∂3W0

∂Pi∂Qk∂Ql
 







+ 

1
16(α + β)2γ2 

∂4W0

∂Pi∂Pj∂Qk∂Ql
 



  , (100)

(dijpk|dlmk) = af 






 clcm + δlm 

1
2γ 




 (D0

21W0 + D1
21 + D2

21 + D3
21)



+ 
1
2γ D0

21 



 cl 

∂W0

∂Qm
 + cm 

∂W0

∂Ql
 + 

1
2γ 

∂2W0

∂Ql∂Qm
 




+ 
1

4(α + β)γ 



 aiajP2,lmcl 

∂2W0

∂Pk∂Qm
 + aibkP2,lmcl 

∂2W0

∂Pj∂Qm
 + ajbkP2,lmcl 

∂2W0

∂Pi∂Qm
 




+ 
1

8(α + β)2γ
 



 δijP2,lmcl 

∂2W0

∂Pk∂Qm
 + δikP2,lmcl 

∂2W0

∂Pj∂Qm
 + δjkP2,lmcl 

∂2W0

∂Pi∂Qm
 



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+ 
1

8(α + β)γ2 



 aiaj 

∂3W0

∂Pk∂Ql∂Qm
 + aibk 

∂3W0

∂Pj∂Ql∂Qm
 + ajbk 

∂3W0

∂Pi∂Ql∂Qm
 




+ 
1

16(α + β)2γ2 P3,ijkδij 
∂3W0

∂Pk∂Ql∂Qm
 + 

1
16(α + β)3γ

 P2,lmcl 
∂4W0

∂Pi∂Pj∂Pk∂Qm

+ 
1

8(α + β)2γ
 



 aiP2,lmcl 

∂3W0

∂Pj∂Pk∂Qm
 + ajP2,lm 

∂3W0

∂Pi∂Pk∂Qm
 + bkP2,lmcl 

∂3W0

∂Pi∂Pj∂Qm
 




+ 
1

16(α + β)2γ2 



 ai 

∂4W0

∂Pj∂Pk∂Ql∂Qm
 + aj 

∂4W0

∂Pi∂Pk∂Ql∂Qm
 + bk 

∂4W0

∂Pi∂Pj∂Ql∂Qm 








+ 

1
32(α + β)3γ2 

∂5W0

∂Pi∂Pj∂Pk∂Ql∂Qm
 



  , (101)

P2,ij means two permutations in indices i and j.

(dijdkl|dmnk) = af 






 cmcn + δmn 

1
2γ 




 (D0

22W0 + D1
22 + D2

22 + D3
22 + D4

22)


+ 
1
2γ D0

22 



 cm 

∂W0

∂Qn
 + cn 

∂W0

∂Qm
 + 

1
2γ 

∂2W0

∂Qm∂Qn
 




+ 
1

4(α + β)γ 



 aiajP2,klP2,mnbkcm 

∂2W0

∂Pl∂Qn
 + bkblP2,ijP2,mnaicm 

∂2W0

∂Pj∂Qn
 




+ 
1

8(α + β)2γ
 



 aiP3,jklP2,mnδjkcm 

∂2W0

∂Pl∂Qn
 + ajP3,iklP2,mnδikcm 

∂2W0

∂Pl∂Qn








+ bkP3,ijlP2,mnδijcm 

∂2W0

∂Pl∂Qn
 + blP3,ijkP2,mnδijcm 

∂2W0

∂Pk∂Qn 





+ 
1

8(α + β)γ2 



 P2,klaiajbk 

∂3W0

∂Pl∂Qm∂Qn
 + P2,ijaibkbl 

∂3W0

∂Pj∂Qm∂Qn
 



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+ 
1

16(α + β)2γ2 



 P2,kl (δijbk + δikaj + δjkai) 

∂3W0

∂Pl∂Qm∂Qn








+ P2,ij(δikbl + δilbk + δklai) 

∂3W0

∂Pj∂Qm∂Qn
 




+ 
1

8(α + β)2γ
 



 aiajP2,mncm 

∂3W0

∂Pk∂Pl∂Qn
 + bkblP2,mncm 

∂3W0

∂Pi∂Pj∂Qn
 







+ P2,ijP2,klaibkP2,mncm 

∂3W0

∂Pj∂Pl∂Qn
 



 + 

1
16(α + β)3γ

 P6,ijklδijP2,mncm 
∂3W0

∂Pk∂Pl∂Qn

+ 
1

16(α + β)2γ2 



 aiaj 

∂4W0

∂Pk∂Pl∂Qm∂Qn
 + bkbl 

∂4W0

∂Pi∂Pj∂Qm∂Qn
 + P2,ijP2,klaibk 

∂4W0

∂Pj∂Pl∂Qm∂Qn
 




+ 
1

32(α + β)3γ2 P6,ijklδij 
∂4W0

∂Pk∂Pl∂Qm∂Qn

+ 
1

16(α + β)3γ
 



 P2,ijaiP2,mncm 

∂4W0

∂Pj∂Pk∂Pl∂Qn
 + P2,klbkP2,mncm 

∂4W0

∂Pi∂Pj∂Pl∂Qn
 




+ 
1

32(α + β)3γ2 



 P2,ijai 

∂5W0

∂Pj∂Pk∂Pl∂Qm∂Qn
 + P2,klbk 

∂5W0

∂Pi∂Pj∂Pl∂Qm∂Qn
 








1
32(α + β)4γ

 P2,mncm 
∂5W0

∂Pi∂Pj∂Pk∂Pl∂Qn
 + 

1
64(α + β)4γ2 

∂6W0

∂Pi∂Pj∂Pk∂Pl∂Qm∂Qn
 



  , (102)

P2,ij means two permumations in indices i and j, and P6,ijkl six permutations in indices i,
j, k, l.

Use of complicated formulas for (g1g2|pik) and (g1g2|dijk) integrals may be avoided
by means of the following expressions

(g1g2|pik) = ci(g1g2|sk) + (g1g2|sik)  , (103)
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(g1g2|dijk) = 



 cicj + δij 

1
2γ




 (g1g2|sk) + ci(g1g2|sik) + cj(g1g2|sjk) + (g1g2|sijk)  , (104)

where (g1g2|sik) is obtained by the formula for (g1g2|sk) integrals but each derivative of
W0 is substituted by a higher derivative according to the pattern

W0 → 
1
2γ 

∂W0

∂Qi
  ,

∂W0

∂Pj
 → 

1
2γ 

∂2W0

∂Qi∂Pj
  ,

∂nW0

∂Pj…∂Pm
 → 

1
2γ 

∂n + 1W0

∂Qi∂Pj…∂Pm
  .

Integral (g1g2|sijk) is also obtained by the formula for (g1g2|sk) but each derivative of
W0 is substituted by a higher derivative according to the pattern

W0 → 
1

4γ2 
∂2W0

∂Qi∂Qj
  ,

∂W0

∂Pk
 → 

1
4γ2 

∂3W0

∂Qi∂Qj∂Pk
  ,

∂nW0

∂Pk…∂Pm
 → 

1
4γ2 

∂n + 2W0

∂Qi∂Qj∂Pk…∂Pm
  .

CONCLUSIONS

We have derived formulas for two-electron free-free exchange integrals in a Gaussian
basis and two-electron hybrid integrals with three Gaussians and one plane-wave func-
tion. For integrals with p- and d-type Gaussians we used a traditional method of dif-
ferentiation of the fundamental integrals containing s-type Gaussians only. Since the
fundamental integrals may be evaluated by means of the Faddeeva function w, their
differentiation leads to expressions containg derivatives of w with respect to Cartesian
coordinates of points on which the Gaussians are centered. The formula for (dd|dk)
integrals given by Eq. (102) supports the opinion of Watson and McKoy2 that the
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method becomes quickly cumbersome as it is applied to Gaussians with higher quan-
tum numbers of the angular momentum. However, we still believe that the method may
be useful for electron-molecule scattering calculations in the spd Gaussian basis set. A
work is now in progress in which we test the efficiency of different methods for the
evaluation of two electron integrals in a mixed plane-wave and Gaussian basis.

This work was supported by grant No. 203/96/1072 of the Grant Agency of the Czech Republic.
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